Our QFT robust control contributions



Prof. Mario García-Sanz and Prof. Isaac Horowitz. Public University of Navarra, Pamplona, Spain, 2000.



Prof. Houpis and Prof. Mario García-Sanz, QFT Int. Symposium, 2001.



See [1]. New book about QFT Control



See [2]. Best-selling book @ CRC Press



See [4]. The QFTCT for Matlab



See [3]. QFT book

Over the last 25 years we have been involved in the development of new QFT (Quantitative Feedback Theory) robust control methodologies. This includes both fundamental research and commercial applications with industry and space agencies. In this page, we present some of our projects and publications applying QFT robust control techniques, and since 2008 the QFT Control Toolbox as well.

Developed by Prof. Mario Garcia-Sanz, the QFT Control Toolbox has been tested on a large number of industrial projects, space missions and university courses worldwide, including the Public University of Navarra (Spain), Case Western Reserve University (USA), the European Space Agency ESA-ESTEC (The Netherlands), NASA-JPL (USA), multi-national NATO/RTO Lecture series, industrial seminars and plenary talks at NRAO-GBT, IFAC-ROCOND, IEEE-NAECON, etc.


Selection of projects and publications

A.- QFT books, CAD tools and special publications
a.1. Books

[1].     Garcia-Sanz, M. (2017). Robust Control Engineering: practical QFT solutions.CRC Press, Taylor and Francis, USA. ISBN: 978-1-138-03207-1.

[2].     Garcia-Sanz, M. and Houpis, C.H. (2012). Wind Energy Systems: Control Engineering Design. Part I: QFT robust control. Part II: Wind turbine control.CRC Press, Taylor and Francis, USA. ISBN: 978-1-4398-2179-4.

[3].     Houpis, C.H., Rasmussen, S.J. and Garcia-Sanz, M. (2006). Quantitative Feedback Theory: Fundamentals and Applications. 2nd Edition. CRC Press, Taylor and Francis, USA. ISBN: 0-8493-3370-9.

a.2. CAD Tools for QFT Controller Design

[4].    Garcia-Sanz, M. (2008-present).  The QFT Control Toolbox (QFTCT) for Matlab. http://codypower.com

[5].    Garcia-Sanz, M., Mauch, A. and Philippe, C., (2009). QFT Control Toolbox: an Interactive Object-Oriented Matlab CAD tool for Quantitative Feedback Theory. 6th IFAC Symposium on Robust Control Design, ROCOND'09, Haifa, Israel.

[6].    Garcia-Sanz, M., Vital, P., Barreras, M., and Huarte, A. (2001). InterQFT. Public University of Navarra. Also as Interactive Tool for Easy Robust Control Design, IFAC Int. Workshop, Internet Based Control Education, pp. 83-88, Madrid, Spain.

a.3. Journal Special Issues about QFT

[7].    Garcia-Sanz, M. (Guest Editor), (2003). Robust Frequency Domain Special Issue. Int. J. Robust Nonlinear Control, Wiley, Vol. 13, No. 7.

[8].    Garcia-Sanz, M. and Houpis, C.H. (Guest Editors), (2007). Quantitative Feedback Theory: In memoriam of Isaac Horowitz, Special Issue, Int. J. Robust Nonlinear Control, Wiley, Vol. 17, N. 2-3.

a.4. International QFT Symposia (organization)

[9].    Garcia-Sanz, M. (Editor), (2001). 5th Int. Symp. QFT and Robust Frequency Domain Methods, Public University of Navarra, Pamplona, Spain.

a.5. Tutorials about QFT

[10].    Garcia-Sanz, M., (2001). QFT international symposia: past, present and future. Editorial of 5th Int. Symp. on QFT and Robust Frequency Domain Methods, Pamplona, Spain.

[11]. Garcia-Sanz, M., (2005). Control Robusto Cuantitativo: Historia de una Idea," (in Spanish), Revista Iberoamericana de Automatica e Informatica Industrial, Vol. 2, No. 3, pp. 25-38.

[12]. Garcia-Sanz, M. (2015). Quantitative Feedback Theory. Chapter in Encyclopedia of Systems and Control. Editors: Tariq Samad, John Baillieul. Article ID: 366609, Chapter ID: 238. Springer Verlag.

a.6. NATO/RTO Lecture Series about QFT

[13]. Garcia-Sanz, M., (2003). Quantitative Feedback Theory (QFT): Bridging the gap. NATO/RTO Lecture Series SCI-236. Systems Concepts and Integration Panel. Robust Integrated Control System Design Methods for the 21st Century Military Applications. Setubal, Portugal; Forli, Italy; and Los Angeles, CA, USA.

[14]. Garcia-Sanz, M., (2005). Quantitative Robust Control Engineering. Theory and Applications. NATO/RTO Lecture Series SCI-166. Partnership for Peace (PFP). Systems Concepts and Integration Panel. Achieving Successful Robust Integrated Control System Designs for the 21st Century Military Applications. Stockholm, Sweden; Zurich, Switzerland; Bucharest, Romania.

[15]. Garcia-Sanz, M., (2007). Quantitative Robust Control of Spacecraft Formations. NATO/RTO Lecture Series SCI-175. Systems Concepts and Integration Panel: System Control Technologies, Design Considerations & Integrated Optimization Factors For Distributed Nano Unmanned Air Vehicle (UAV) Applications. Davis, CA, USA; Rostock, Germany; Florence, Italy.

[16]. Garcia-Sanz, M., Eguinoa, I., Elso, J. (2008). Beyond the Classical Performance Limitations Controlling Uncertain MIMO Systems: UAV Applications. NATO/RTO Lecture Series SCI-195. Systems Concepts and Integration Panel: Advanced autonomous formation control and trajectory management techniques for multiple micro UAV applications. Glasgow, UK; Pamplona, Spain; Cleveland, OH, USA.

[17]. Garcia-Sanz, M., (2009). MIMO QFT controller design reformulation. Application to spacecraft with flexible appendages and to spacecraft flying in formation in a low Earth orbit. NATO/RTO Lecture Series SCI-209. Systems Concepts and Integration Panel: "Small Satellite Formations For Distributed Surveillance: System Design and Optimal Control Considerations. Stanford, CA, USA; Wurzburg, Germany; Rome, Italy.

B.- QFT Theory. Papers
b.1. QFT Templates

[18]. Garcia-Sanz, M. and Vital, P., (1999). Efficient Computation of the Frequency Representation of Uncertain Systems, 4th Int. Symp. on QFT and Robust Frequency Domain Methods, pp. 117-126, Durban, South Africa.

[19]. Martin, J.J., Gil-Martinez, M., and Garcia-Sanz, M., (2007). Analytical formulation to compute QFT templates for plants with a high number of uncertain parameters. 15th Mediterranean Conf. on Control and Automation, MED'07, Athens, Greece.

b.2. QFT Bounds

[20]. Martin-Romero, J.J., Gil-Martinez, M. and Garcia-Sanz, M., (2009). Analytical Formulation to Compute QFT Bounds: The Envelope Method. Int. J. Robust Nonlinear Control, Wiley, Vol. 19, No. 17, pp. 1959-1971.

[21]. Elso, J., Gil-Martinez, M., Garcia-Sanz, M., (2012). Non-conservative QFT bounds for tracking error specifications. Int. J. Robust Nonlinear Control, Wiley. Vol. 22, pp. 2014-2025.

b.3. QFT Loop-shaping. Controller Synthesis

[22]. Garcia-Sanz, M. and Guillen J.C., (2000). Automatic loop-shaping of QFT robust controllers via genetic algorithms, 3rd IFAC Symp. Robust Control Design, Praha.

[23]. Garcia-Sanz, M., Brugarolas, M.J. and Eguinoa, I., (2004). Quantitative Analysis of Controller Fragility in the Frequency Domain. 23rd IASTED International Symposium. Modelling, identification and control, Grindelwald, Switzerland.

[24]. Garcia-Sanz, M. and Oses, J.A., (2004). Evolutionary algorithms for automatic tuning of QFT controllers, 23th IASTED Int. Symp. Modelling, identification and control, Grindelwald, Switzerland.

[25]. Molins, C. and Garcia-Sanz, M. (2009). Automatic Loop-shaping of QFT Robust Controllers. 61st National Aerospace & Electronics Conference, NAECON, July 2009, Dayton, Ohio, USA.

[26]. Garcia-Sanz, M. and Molins, C. (2010). Automatic Loop-shaping of QFT Robust Controllers with Multi-Objective Specifications via Nonlinear Quadratic Inequalities. 62nd National Aerospace & Electronics Conference, NAECON, July 2010, Dayton, Ohio, USA.

b.4. Existence Conditions for QFT Controllers

[27]. Gil-Martinez, M. and Garcia-Sanz, M., (2003). Simultaneous Meeting of Robust Control Specifications in QFT,  Int. J. Robust Nonlinear Control, Wiley, Vol. 13, No. 7, pp. 643-656.

b.5. Muti-Input Multi-Output QFT Control

[28]. Garcia-Sanz, M. and Egaña I., (2002). Quantitative Non-diagonal Controller Design for Multivariable Systems with Uncertainty. Int. J. Robust Nonlinear Control, Wiley, Vol. 12, No. 4, pp. 321-333.

[29]. Garcia-Sanz, M., Egaña, I. and Barreras, M., (2005). Design of quantitative feedback theory non-diagonal controllers for use in uncertain MIMO systems. IEE Control Theory and Applications. Vol. 152, No. 2, pp. 177-187.

[30]. Garcia-Sanz, M. and Eguinoa, I., (2005). Improved non-diagonal MIMO QFT design technique considering non-minimum phase aspects. 7thInt. Symp. QFT and Robust Frequency Domain Methods, Lawrence, Kansas, USA.

[31]. Garcia-Sanz, M., Eguinoa, I. and Bennani, S., (2009). Non-diagonal MIMO QFT controller design reformulation. Int. J. Robust Nonlinear Control, Wiley, Vol. 19, No. 9, pp. 1036-1064.

[32]. Elso, J., Gil-Martinez, M., Garcia-Sanz, M., (2014).  A quantitative feedback solution to the multivariable tracking error problem. Int. J. Robust Nonlinear Control, Wiley, Vol. 24, No. 16, pp. 2331-2346.

b.6. Time-delay Systems. QFT Controller Design

[33]. Garcia-Sanz, M. and Guillen, J.C., (1999). Smith Predictor for Uncertain Systems in the QFT Framework. Lecture Notes in Control and Information Sciences, Ed. Springer Verlag. Vol. 243. Progress in System and Robot Analysis and Control Design. Chapter 20, pp. 243-250.

b.7. Distributed Parameter Systems. QFT Controller Design

[34]. Garcia-Sanz, M., Huarte, A. and Asenjo, A., (2007). A Quantitative Robust Control Approach for Distributed Parameter Systems. Int. J. Robust Nonlinear Control, Wiley, Vol. 17, No. 2-3, pp. 135-153.

b.8. Feedforward and QFT Controller Design

[35]. Elso, J., Gil-Martinez, M., Garcia-Sanz, M., (2013). Quantitative feedback-feedforward control for model matching and disturbance rejection. IET Control Theory & Applications, Vol. 7, Issue 6, pp. 894-900

b.9. Nonlinear-QFT Control Solutions

[36]. Garcia-Sanz, M. and Elso, J., (2009). Beyond the linear limitations by combining Switching & QFT. Application to Wind Turbines Pitch Control Systems. Int. J. Robust Nonlinear Control, Wiley, Vol. 19, No. 1, pp. 40-58.

b.10. Stability Analysis and Controller Design in the Nichols Chart

[37]. Garcia-Sanz, M., (2016). The Nyquist Stability Criterion in the Nichols Chart. Int. J. Robust Nonlinear Control, Wiley, Vol. 26, No. 12, pp. 2643-2651.

C.- Real-world applications with QFT

[38]. Garcia-Sanz, M. and Ostolaza, J.X., (2000). QFT-Control of a Biological Reactor for Simultaneous Ammonia and Nitrates Removal. Int. J. on Systems, Analysis, Modelling, Simulation, SAMS, No. 36, pp. 353-370.

[39]. Egaña, I., Villanueva, J., and Garcia-Sanz, M., (2001). Quantitative Multivariable Feedback Design for a SCARA Robot Arm, 5th Int. Symp. on QFT and Robust Frequency Domain Methods, pp. 67-72, Pamplona, Spain.

[40]. Garcia-Sanz, M., Guillen, J.C., and Ibarrola, J.J., (2001). Robust controller design for time delay systems with application to a pasteurization process. Control Engineering Practice, No. 9, pp. 961-972.

[41]. Torres E., and Garcia-Sanz, M., (2004). Experimental Results of the Variable Speed, Direct Drive Multipole Synchronous Wind Turbine: TWT1650, Wind Energy, Vol. 7, No. 2, pp. 109-118.

[42]. Garcia-Sanz, M. and Hadaegh, F.Y., (2004). Coordinated Load Sharing QFT Control of Formation Flying Spacecrafts. 3D Deep Space and Low Earth Keplerian Orbit problems with model uncertainty, NASA-JPL, JPL Document, D-30052, Pasadena, California, USA.

[43]. Barreras, M. and Garcia-Sanz, M., (2004). Multivariable QFT controllers design for heat exchangers of solar systems, International Conference on Renewable Energy and Power Quality, Barcelona, Spain.

[44]. Garcia-Sanz, M. and Barreras, M., (2006). Non-diagonal QFT controller design for a 3-input 3-output industrial Furnace. Int. J. of Dynamic Systems, Measurement & Control, ASME, Vol. 128, No. 2, pp. 319-329.

[45]. Barreras, M., Villegas, C., Garcia-Sanz, M., Kalkkuhl, J., (2006). Robust QFT tracking controller design for a Car equipped with 4-Wheel Steer-by-Wire. IEEE International Conference on Control Applications, CCA, Munich, Germany.

[46]. Garcia-Sanz, M., Eguinoa, I., Ayesa, E. and Martin, C., (2006). Non-diagonal multivariable robust QFT control of a wastewater treatment plant for simultaneous nitrogen and phosphorus removal. Robust Control Design Conference, ROCOND'06, IFAC, Toulouse, France.

[47]. Garcia-Sanz, M. and Hadaegh, F.Y., (2007). Load-Sharing Robust Control Of Spacecraft Formations: Deep Space And Low Earth Elliptic Orbits, IET Control Theory and Applications (former IEE). Vol.1, No. 2, pp. 475-484, United Kingdom.

[48]. Garcia-Sanz, M., Eguinoa, I., Barreras, M. and Bennani, S., (2008). Non-diagonal MIMO QFT Controller Design for Darwin-type Spacecraft with Large Flimsy Appendages, J. Dynamic Systems, Measurement and Control, ASME, Vol. 130, pp. 011006-1:011006-15.

[49]. Garcia-Sanz M., Eguinoa I., Gil-Martinez, M., Irizar, I., and Ayesa, E., (2008). MIMO Quantitative Robust Control of a Wastewater Treatment Plant for Biological Removal of Nitrogen and Phosphorus. 16th Mediterranean Conference on Control and Automation, MED'08, Ajaccio, France.

[50]. Garcia-Sanz, M. and Molins, C., (2008). QFT Robust Control of a Vega-type Space Launcher. 16th Mediterranean Conf. Control and Automation, Ajaccio, France.

[51]. Garcia-Sanz, M., (2009). QFT: New Developments and Advanced Real-World Applications. Plenary Session. 6th IFAC Symp. Robust Control Design, Haifa, Israel.

[52]. Garcia-Sanz, M., Eguinoa, I. and Barreras, M., (2011). Advanced attitude and position MIMO robust control strategies for telescope-type spacecraft with large flexible appendages. Chapter of the book: Advances in Spacecraft Technologies. Intech. ISBN 978-953-307-551-8, edited by Jason Hall, DOI: 10.5772/14506.

[53]. Garcia-Sanz,M., Ranka,T., Joshi,B.C. (2011). Advanced nonlinear robust controller design for high-performance servo-systems in large radar antennas. 63th National Aerospace & Electronics Conference, IEEE-NAECON, Dayton, Ohio, USA.

[54]. Garcia-Sanz,M., Ranka,T., Joshi,B.C. (2012). High-performance switching QFT control for large radio telescopes with saturation constraints. 64th National Aerospace & Electronics Conference, IEEE-NAECON, Dayton, Ohio, USA.

[55]. Garcia-Sanz,M., Franke,T., Ranka,T., Adams,M.L., Adams,M., Ford,J., Weadon,T., McCullough,R., Ray,J. (2013). Advanced control solutions to extend the operational frequencies of the Green Bank Radio Telescope: from control theory to experimental validation. CWRU ShowCase, Cleveland, Ohio, USA.

[56]. Lounsbury,W., Garcia-Sanz,M. (2014). High-Performance Quantitative Robust Switching Control for Optical Telescopes. Montreal, Quebec: 2014 SPIE Astronomical Telescopes and Instrumentation Conference, SPIE, Software and Cyberinfrastructure for Astronomy III.

[57]. Garcia-Sanz, M., Labrie, H., and Cavalcanti, J. (2014). Wind Farm Lab Test-Bench for Research/Education on Optimum Design and Cooperative Control of Wind Turbines. Chapter 14 in book: Wind Turbine Control and Monitoring, Eds.Luo,Vidal,Acho. Series of Green Energy and Technology, ISBN: 978-3-319-08412-1, Springer Verlag.

  


QFT control for multi-megawatt variable-speed wind turbines for wind turbine European manufacturers. See in picture the MTOI 1.65 MW direct-drive wind turbine.



QFT control for extra large radio telescopes for national observatories. See in picture the Green Bank Telescope (GBT-NRAO).



QFT control for wastewater treatment plants with activated sludge processes for water treatment plants. See in picture Crispijana WWTP.



QFT control for formation-flying spacecraft with flexible appendages (for ESA-ESTEC and NASA-JPL). See in picture the Darwin mission.

 


Located in Cleveland, Ohio, Case Western Reserve University is one of the nation's top research universities.
© Copyright Case Western Reserve University | Cleveland, Ohio 44106 | 216-368-2000 | info@case.edu | legal notice